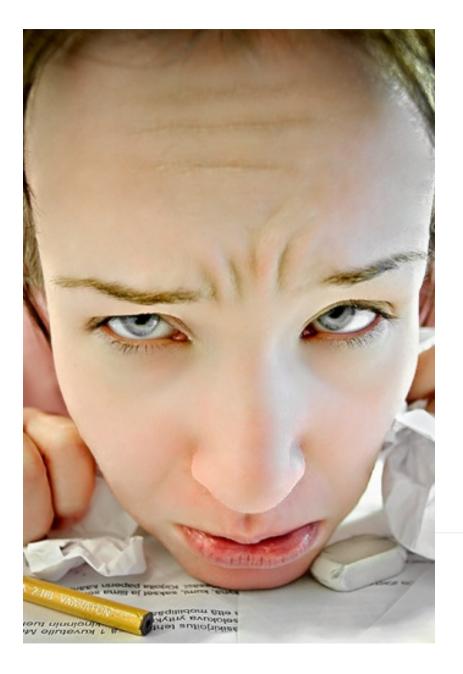


CULTIVATING INVENTION PEDAGOGY IN FINNISH SCHOOLS

Kai Hakkarainen Kaiju Kangas Pirita Seitamaa-Hakkarainen Department of Education University of Helsinki


HELSINGIN YLIOPISTO

T Tampereen yliopisto

Turun yliopisto University of Turku

Innokas!

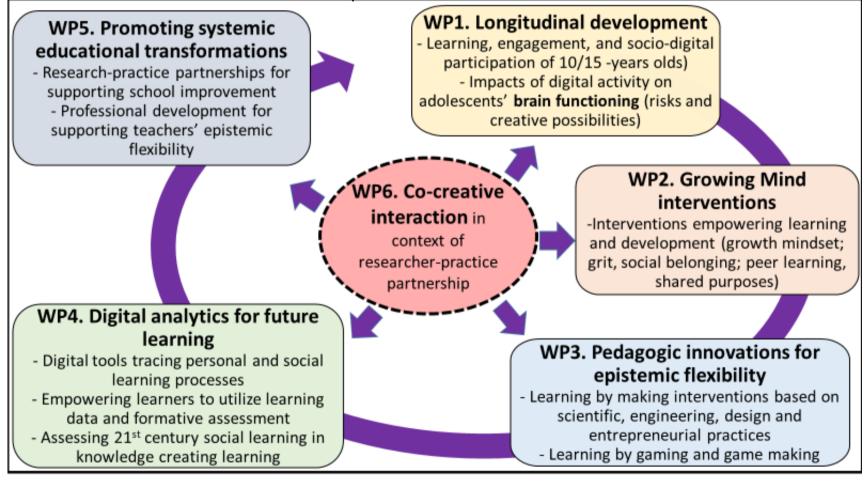
Helsinki Helsingfors

THE CHALLENGE OF INTELLECTUAL ENGAGEMENT

- FINNISH STUDENTS ARE PERFORMING VERY WELL IN INTERNATIONAL SCHOOL ACHIEVEMENT TESTS
- GETTING HIGH SCIENCE SCORES BUT INDICATING ONLY A LOW INTEREST IN SCIENCE
- BOYS ARE BORED/ALIENATED AND GIRLS EXPERIENCE INSUFFICIENCY/ EXHOUSTION
- ACTIVE SOCIO-DIGITAL PARTICIPATORS FEEL INCREASINGLY ALIENATED IN EXTERNALLY REGULATED, TEACHER CENTERED AND INDIVIDUALIST STUDIES

THREE METAPHORS OF LEARNING

(PAAVOLA, LIPPONEN, & HAKKARAINEN, 2004)


Knowledge-creation metaphor (Pursuing engaging objects and projects)

Participation metaphor (Sharing expertise in a valued community; connecting informal and formal learning; being socially recognized)

GROWING MIND: EDUCATIONAL TRANSFORMATIONS FOR PERSONAL, SOCIAL, AND INSTITUTIONAL RENEWAL AT THE DIGITAL AGE ((STRATEGIC RESEARCH, THE ACADEMY OF FINLAND (2018-2023)

Multi-disciplinary network of educational research, craft science, developmental psychology, computer science, game studies, and neuroscience

GROWING MIND: STRATEGIC RESEARCH PROJECT

strategic Research research-based knowledge to support soci

Academic excellence		Societal
------------------------	--	----------

From sustaining to disruptive innovations for promoting radical school transformations

GROWING

Opening new innovative lines of investigation Cutting edge theories and methods High quality articles Pursuing participatory pedagogic innovations; Fostering systemic digital-pedagogic transformations of schools Producing policy-relevant scientific knowledge Constant interaction with policy makers Continuous media presence

THREE PRACTICES OF USING SOCIO-DIGITAL TECHNOLOGIES

(ITO ET AL 2010)

Creative participation

gap: disadvantaged students have limited access to and support for creative use of technology

- Constant interruptions create "grasshopper minds"?
- Longitudinal data confirm that active digital participators increasingly alienated at school
- Young people need practices of using structured support for learning academic and creative practices of using sociodigital technology

Friendship-driven use of technology. Hanging out by keeping hyperintensive connection with extended network of friends through texting, instant messaging, and emailing mediated by mobile devices and social media.

Interest-driven use of technology. Peer supported use of socio-digital technologies for experimenting and playing while pursuing personal and joint interests, modifying and creating media, and developing sociodigital competences.

Structured efforts of creative and academic use of technology. Sustained collaborative working with open-ended and complex problems, creating and building knowledge and artifacts and, preferably, pursuing longstanding creative study projects (an emerging knowledge practice in Finnish schools)

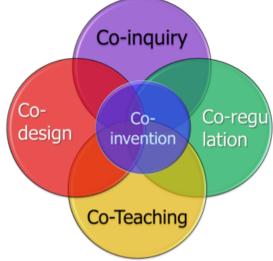
TOWARDS KNOWLEDGE-CREATING LEARNING

Linear pedagogy

Practices of content delivery

Transmitting basic disciplinary knowledge

- Focus on simplied and outdated textbook knowledge
- Becomes rapidly obsolete
- Content without methods looses its meaning (inert knowledge, rigid routines)


Bringing expert-like knowledge practices to school Nonlinear pedagogy

Practices of knowledge making

Collaborative hands-on learning of knowledge creation

- Operational methods of co-creating knowledge
- Scientific, engineering, design and entrepreneurial practices
- Schools partnering with wider community and university for solving vital societal problems

GENERAL DESCRIPTION OF CO-INVENTION PROJECT

- Creating spaces (fablabs) for making and inventing at school
- Complex invention projects supported by traditional and digital fabrication technologies

Ethos:

- Everybody can be an inventor
- Best ideas are co-created
- Ideas develop by exploration
- Inventing requires sustained effort across iterations

- Bringing elements of maker culture to school in terms of challenging knowledge-creation projects
- Engaging students co-designing and co-constructing complex artifacts sparking intellectual, engineering, and aesthetic challenges
- Operational methods of creative making that provide access to experts methods, practices and networks

CRAFT EDUCATION IN FINLAND

Craft teacher education is almost 140 years old.

- All teacher training moved to the university level in 1970 (qualified teacher holds Master of Education –degree)
- Craft teacher typically teaches at grades 7 to 9 (ages 13 to 15); but also as subject teacher at primary level 5 to 6.
- They typically teach one major (craft) and one minor subjects (e.g. history / math / visual arts)
- Craft education (previously textile and technical work) is compulsory subject until the end of grade 7. It is a voluntary school subject in grades 8 and 9.
 - The craft curriculum is made for preprimary level, primary school level (grades 1–3), intermediate level (grades 4–6), and junior high school level (grades 7–9)

NATIONAL CURRICULUM FOR BASIC EDUCATION 2014

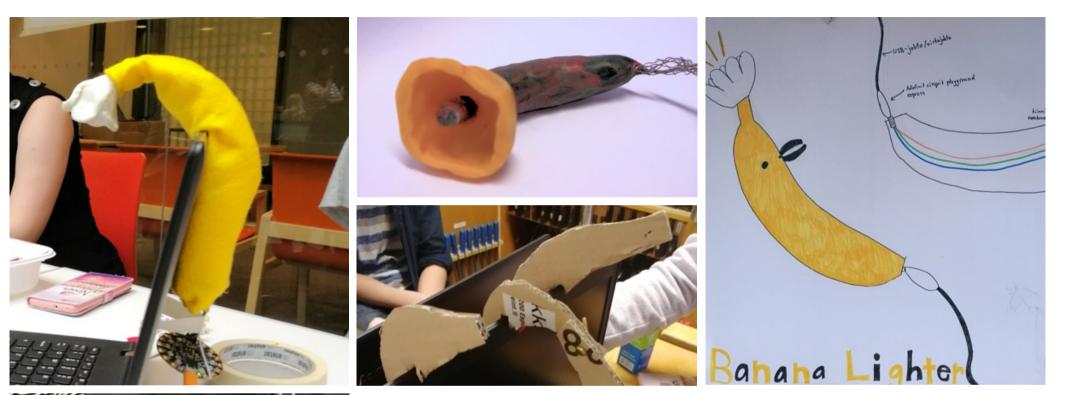
- Craft curriculum highlights the holistic craft processes:
 - Iterative nature of design process: ideation, testing and making as well as reflective evaluation and experimenting and prototyping
 - Digitally documenting design processes (digital e-portfolios)
- Combine traditional and digital technologies; schools approaches to maker culture
 - The emphasis is on the use of various visual and material representations for materializing students' design ideas
 - Making includes numerous activities with various materials as well as interaction with digital technology such as 3D modeling and printing, robotics and programming
- Provides frames for conducting (phenomenon-based) integrative thematic-study projects together with other school subjects (STEAM)

GROWING MIND CO-INVENTION PROJECTS

- Bringing elements of maker culture to schools by carrying out inspiring making projects engaging students with various ages, genders, and special educational needs (SEN):
 - The projects are anchored in phenomenon-based studies integrating several subjects
 - Examining how creative hand-on activities can be productively integrated with "minds on" science education
- Exploring various way of constraining and structuring projects from open ended to more focused projects
- Digital fabrication (e.g. coding, microprocessors, sensors, robotics, 3D printers, laser cutters, e-textiles) in conjunction with traditional tools and technologies
- Working together with Innokas-network <u>http://www.innokas.fi/en</u>

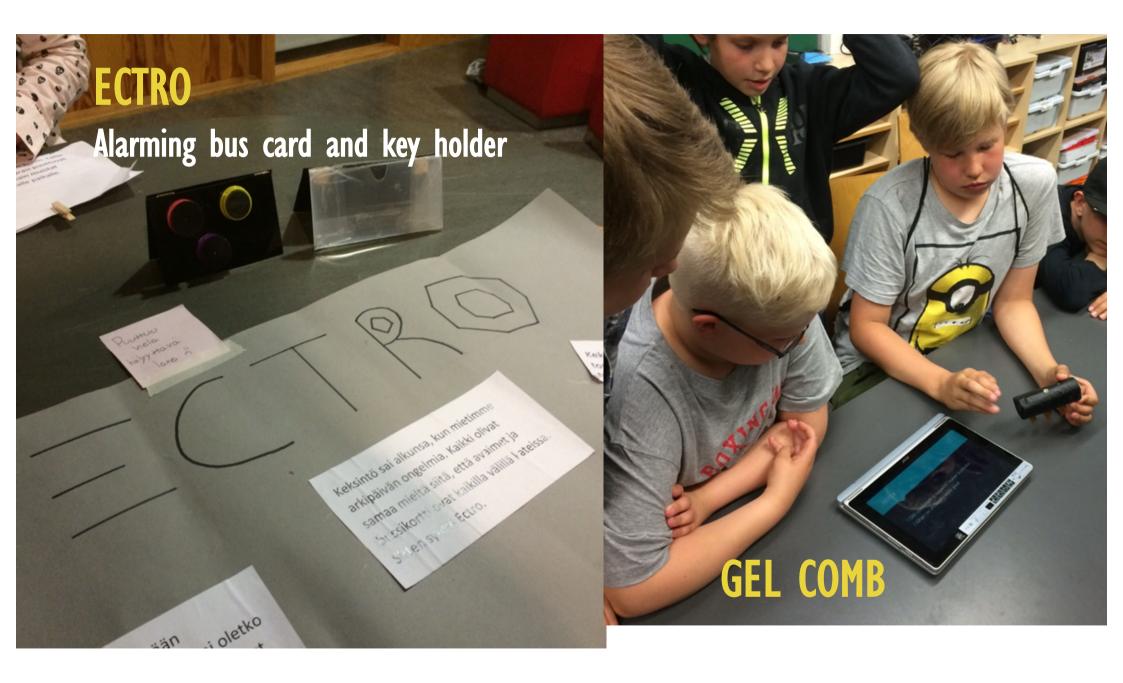
OPEN FRAME OF GROWING MIND (CO4-LAB) INTERVENTIONS PROJECTS

Orientation	Analysis of various artifacts, their history and features	
Design challenge	An open design and invention challenge (recognized everyday problems, studying earlier designs and their users)	
Co-Inquiry	Exploring and testing ideas through science experiments	
Ideation	Producing design ideas and analyzing design constraints	
Exhibition	Presenting ideas and getting feedback from peers, teachers, and experts	
Knowledge seeking	Knowledge seeking from museums, internet, joint field studies	
Co-Inquiry	Testing design ideas, creating mock-ups and prototypes	
Fabrication	Fabricating models and products	
Exhibition	Introducing and publishing inventions and reporting knowledge creation processes	


GROWING MIND PROJECT SCHOOLS

- Projects are designed in close collaboration with teacher teams and researchers. Planning co-invention projects in fall and implemented in spring (two to four months)
- 1st cycle (2016-2017) four schools, 17 teachers (class and subject teachers), 14 classes (grade 5 to 7) + peer tutors from 8th grade
- 2nd cycle (2017-2018): five schools, 10 teachers (mainly craft teachers); 5 classes
 - 1- 8 graders + peer tutors from 8th grade

- 3rd cycle (2018-2019): four "old schools" + 6 new schools; 22 teachers; 20 classes (grades 0-8) + peer tutors from 8th grade
 - special education schools/ classes included;
- 4th cycle (2019-2020) starting: 6 "old schools" + 3 new schools & 6 preschools + peer tutors from 8th grade
 - special education schools/ classes included



BANANA LIGHT

Diving Tower

My 3d printout is a diving tower that rises and lowers on its own.

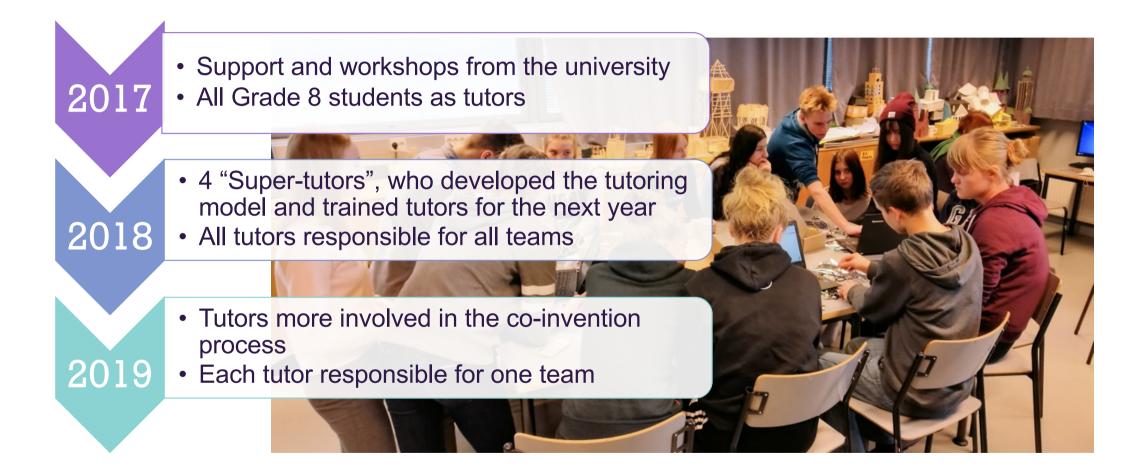
If the yellow light is on you're not allowed to jump and if the green light is on you can jump

Chessboard

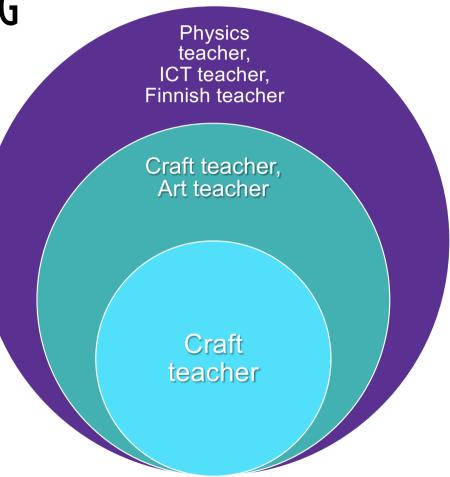
This is a miniature chessboard. The light is on when the game starts and the buzzer rings, when a chess piece eats another piece. You can play chess with it.

Room

This is a room with a feet drying machine, if someone steps on top of the machine the buzzer starts to ring in the room there is also a beanbag carpet table ja tv the light goes on, if someone enters the room the room has green walls and a brown floor.

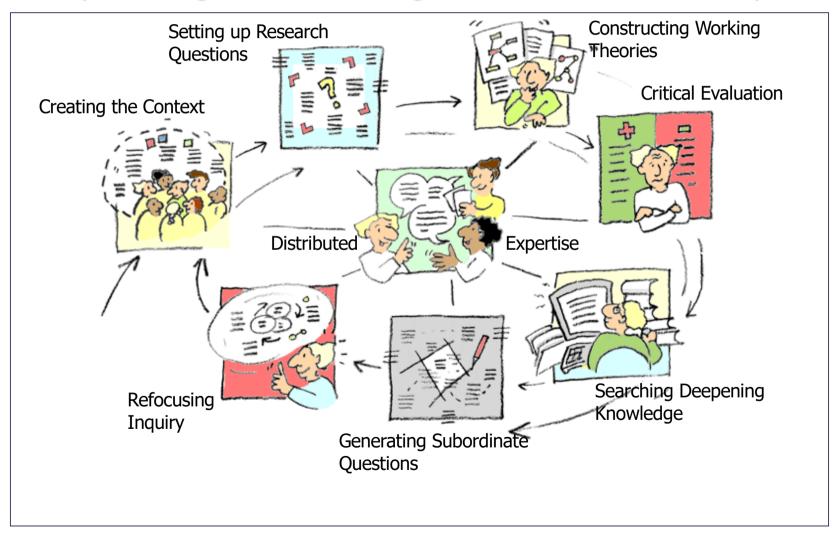

FACILITATING STUDENTS

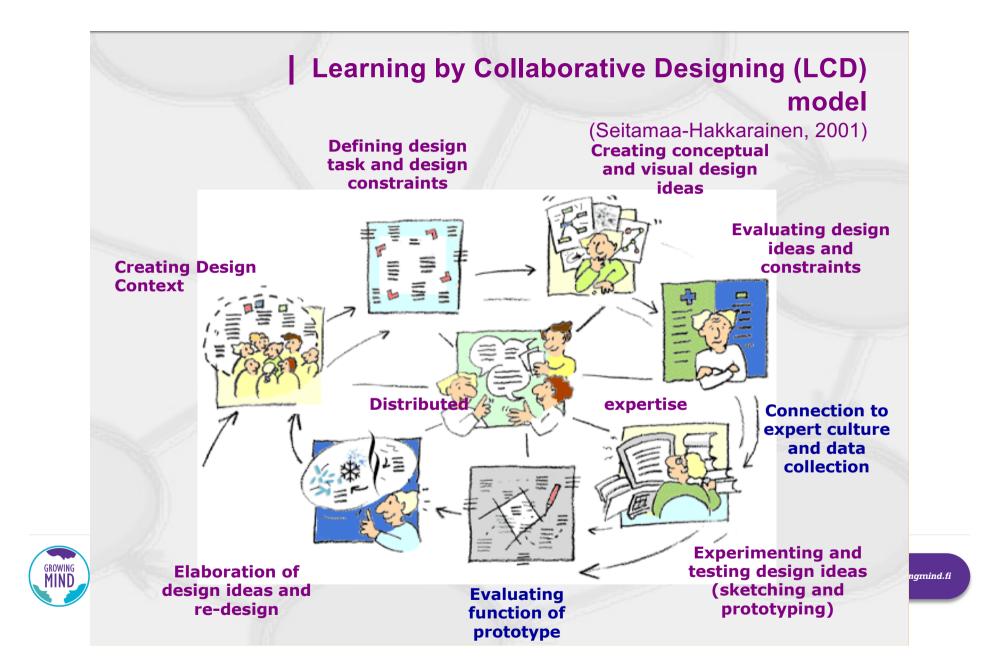
- Supporting of designing
 - Give students time to brainstorm and develop ideas => how to move from idea to design
 - Emphasize the importance of different material experiments and prototyping
 - Joint presentation of ideas and peer or expert feedback are important
- Forming of student teams
 - A good group size is usually groups of 3 to 4 people
 - Requires careful preplanning from the teachers
- Fostering students' self-directedness => how to support student group responsibility for their work and planning for work as well as provide social recognition of active participation
 - Students' digital documentation of the co-invention process is central: sufficient time and effort should be invested to create the e-portfolios => what parts of the project are documented in the portfolio and how?



ESTABLISHING THE PEER TUTORING SYSTEM

THREE LAYERS OF TEAM TEACHING


- Factors affecting team-teaching
 - Co-planning practices: ideation, organization, and evaluation
 - Team roles: responsibilities, interpersonal chemistry, participants' expectations
 - Knowledge sharing: key factor
- Research-practice partnership
 - Focus on solving practice problems of school transformation
 - Both teachers and researchers beyond their comfort zones
 - Cross-school participatory workshops on ideation and codesigning school projects
 - Building extended professional learning networks



RELATED PUBLICATIONS

- Hakkarainen, K., Hietajärvi, L., Alho, K., Lonka, K., & Salmela-Aro, K. (2015). Socio-digital revolution: Digital natives vs digital immigrants. In J. D. Wright (editor-in-chief) International encyclopedia of the social and behavioral sciences (pp. 918-923). 2nd Edition, Vol 22. Amsterdam: Elsevier
- Hakkarainen, K., Paavola, S., Kangas, K., & Seitamaa-Hakkarainen, P. (2013) Socio-cultural perspectives on collaborative learning: In C. E. Hmelo-Silver, A. M. O'Donnell, C. Chan, & C. A. Chinn (Eds.), The International Handbook of Collaborative Learning (pp. 57-73). London, UK: Routledge.
- Kangas, K. & Seitamaa-Hakkarainen, P. (2017). Collaborative design work in technology education. In M. J. de Vries (Ed.), Handbook of Technology Education (pp. 1–13). Springer International Handbooks of Education.
- Kangas, K., Seitamaa-Hakkarainen, P, & Hakkarainen, K. (2013). Figuring the world of designing: Expert participation in elementary classroom. International Journal of Technology and Design Education, 23, 425-442.
- Kangas, K, Seitamaa-Hakkarainen, P., & Hakkarainen K. (2013). Design thinking in elementary students' collaborative lamp designing process. Design and Technology Education – An international Journal, 18, 30-43.
- Kangas, K., Seitamaa-Hakkarainen, P., & Hakkarainen, K. (2013). Design Expert's Participation in Elementary Students' Collaborative Design Process. International Journal of Technology and Design Education, 23, 161-178.
- Paavola S. & Hakkarainen, K. (2014). Trialogical approach for knowledge creation. In Tan S-C., Jo, H.-J., & Yoe, J. (Eds.), Knowledge creation in education (pp. 53-72). Education Innovation Series by Springer.
- Riikonen, S, Seitamaa-Hakkarainen, P. & Hakkarainen, K (2018). Bringing practices of co-design and making to basic education. In J. Klay & R. Luckin (Eds.)., Proceedings of the 13th International Conference on the Learning Sciences "Rethinking learning in the digital age: Making the learning sciences count". Volume 1 (pp. 248-256). Institute of Education, University College London, UK.
- Seitamaa-Hakkarainen, P & Hakkarainen, K. (2017). Learning by making. In K. Peppler (Ed.) The SAGE Encyclopedia of Out-of-School Learning (pp. 421-424). Thousand Oaks: Sage.
- Viilo, M., Seitamaa-Hakkarainen, P., & Hakkarainen, K. (2016) Teacher's long-term or-chestration of technology-mediated collaborative inquiry project. Scandinavian Journal of Educational Research, 62, 3, 407-432.
- Yrjönsuuri, V., Kangas, K., Hakkarainen, K. & Seitamaa-Hakkarainen, P (2019). The roles of material prototyping in collaborative design process at an elementary school. *Design and technology education: An international journal, 24, 141-162.*

Progressive Inquiry Model (Investigative learning, Hakkarainen, 1998)

